Digital simulation of an arbitrary stationary stochastic process by spectral representation.
نویسندگان
چکیده
In this paper we present a straightforward, efficient, and computationally fast method for creating a large number of discrete samples with an arbitrary given probability density function and a specified spectral content. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In contrast to previous work, where the analyses were limited to auto regressive and or iterative techniques to obtain satisfactory results, we find that a single application of the inverse transform method yields satisfactory results for a wide class of arbitrary probability distributions. Although a single application of the inverse transform technique does not conserve the power spectra exactly, it yields highly accurate numerical results for a wide range of probability distributions and target power spectra that are sufficient for system simulation purposes and can thus be regarded as an accurate engineering approximation, which can be used for wide range of practical applications. A sufficiency condition is presented regarding the range of parameter values where a single application of the inverse transform method yields satisfactory agreement between the simulated and target power spectra, and a series of examples relevant for the optics community are presented and discussed. Outside this parameter range the agreement gracefully degrades but does not distort in shape. Although we demonstrate the method here focusing on stationary random processes, we see no reason why the method could not be extended to simulate non-stationary random processes.
منابع مشابه
Second Moment of Queue Size with Stationary Arrival Processes and Arbitrary Queue Discipline
In this paper we consider a queuing system in which the service times of customers are independent and identically distributed random variables, the arrival process is stationary and has the property of orderliness, and the queue discipline is arbitrary. For this queuing system we obtain the steady state second moment of the queue size in terms of the stationary waiting time distribution of a s...
متن کاملConfidence Interval Estimation of the Mean of Stationary Stochastic Processes: a Comparison of Batch Means and Weighted Batch Means Approach (TECHNICAL NOTE)
Suppose that we have one run of n observations of a stochastic process by means of computer simulation and would like to construct a condifence interval for the steady-state mean of the process. Seeking for independent observations, so that the classical statistical methods could be applied, we can divide the n observations into k batches of length m (n= k.m) or alternatively, transform the cor...
متن کاملPh . D . dissertation under the direction of Stamatis
Consider a stochastic process {x(t), t€T} of random elements of a Hilbert space H, whose index set is a locally compact Hausdorff space. The results obtained in this work fall into two broad categories, first the study of weakly stationary processes and their representations, and secondly the study of the sample path properties of not necessarily . stationary processes. In each case, we choose ...
متن کاملPeriodically correlated and multivariate symmetric stable processes related to periodic and cyclic flows
In this work we introduce and study discrete time periodically correlated stable processes and multivariate stationary stable processes related to periodic and cyclic flows. Our study involves producing a spectral representation and a spectral identification for such processes. We show that the third component of a periodically correlated stable process has a component related to a...
متن کاملBayesian Structure Learning for Stationary Time Series: Supplementary Material
In this supplement we provide more background on spectral analysis of time series and the complex normal and complex inverse Wishart distributions. The hyper complex inverse Wishart is then introduced in more detail and its marginal likelihood is derived. We also provide more detail about the periodogram smoothing plug in method referenced in Section 4 of the main text. Finally, we provide deta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2011